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Abstract Predicting the fate of chlorinated ethenes in groundwater requires the solution
of equations that describe both the transport and the biodegradation of the contaminants.
Here, we present a model that accounts for (1) transport of chlorinated ethenes in flowing
groundwater, (2) mass transfer of contaminants between mobile groundwater and stationary
biofilms, and (3) diffusion and biodegradation within the biofilms. Equations for biodegra-
dation kinetics account for biomass growth within the biofilms, the effect of hydrogen on
dechlorination, and competitive inhibition between vinyl chloride and cis–dichloroethene.
The overall model consists of coupled, non-linear, partial differential equations; solution of
such a model is challenging and requires innovative numerical algorithms. We developed and
tested two new numerical algorithms to solve the equations in the model; these are called
system splitting with operator splitting (SSOS) and system splitting with Picard iteration
(SSPI). We discuss the conditions under which one of these algorithms is superior to the
other. The contributions of this paper are as follows: first, we believe that the mathematical
model presented here is the first transport model that also accounts for diffusion and non-
linear biodegradation of chlorinated ethenes in biofilms; second, the SSOS and SSPI are new
computational algorithms developed specifically for problems of transport, mass transfer,
and non-linear reaction; third, we have identified which of the two new algorithms is com-
putationally more efficient for the case of chlorinated ethenes; and finally, we applied the
model to compare the biodegradation behavior under diffusion-limited, metabolism-limited,
and hydrogen-limited (donor-limited) conditions.
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1 Introduction

Chlorinated ethenes are among the most commonly found contaminants in groundwater.
Clean-up of contaminated groundwater, either by natural attenuation or by an engineered
approach, often requires predictions of how the target contaminants move and degrade. Such
predictions might typically involve solution of an advection-dispersion-reaction equation:

∂C (x, t)

∂t
= D

∂2C (x, t)

∂x2 − ν
∂C (x, t)

∂x
+ α (x, t) (1)

where C(x, t) is the concentration of the target contaminant in groundwater, varying as a
function of position and time. The three terms on the right-hand side of the equation account
for transport of the contaminant by dispersion, transport by advection, and chemical reaction,
respectively. For simplicity, we have assumed that transport is primarily one-dimensional in
the x direction. Chemical reaction may include degradation (for a parent compound such as
perchloroethene), formation (for a final product such as ethene), or both (for intermediate
compounds such as trichloroethene, cis-dichloroethene (DCE), and vinyl chloride (VC)).

Unfortunately, there are at least two significant problems with Eq. 1. The first problem
is that, in many transport models, the kinetics of the biodegradation process are over-sim-
plified. For instance, a typical strategy in a transport model might be to assume first-order
kinetics for the formation and degradation of chlorinated ethenes (e.g., Clement et al. 2000;
Lu et al. 2003; Sun et al. 2004; An et al. 2004; Beranger et al. 2005). However, a more
appropriate description of the reductive dehalogenation of chlorinated ethenes is based on
Monod kinetics or Michaelis–Menten kinetics. Studies for reductive dehalogenation have
shown the necessity of including substrate limitation, electron-donor limitation, and/or
competitive inhibition between chlorinated ethenes on the modeling of bacterial growth
(e.g., Ballapragada et al. 1997; Bagley 1998; Fennell and Gossett 1998; Cupples et al. 2004;
Yu et al. 2005). Therefore, dechlorination of chlorinated ethenes cannot be well approxi-
mated by first-order kinetics. Coupling a non-linear Monod kinetic model to the transport
equation (1) is therefore necessary to accurately predict the fate and transport of chlorinated
ethenes; some studies in the literature have adopted this approach (e.g., Tompson et al. 1994;
El-Farhan et al. 1998).

The second problem with Eq. 1 is that the reaction term α is almost always described in
terms of the bulk contaminant concentration, C(x, t). This is a problem because biodegra-
dation typically does not occur in the bulk groundwater, but rather in stationary biofilms that
coat the grains of the aquifer solids (Rittmann 1993). In some cases, it may be acceptable
to formulate chemical reaction kinetics in terms of the bulk or “macroscopic” concentra-
tions, rather than the concentrations within the biofilm (Baveye and Valocchi 1989). Indeed,
Rittmann and VanBriesen (1996) suggested that, in many subsurface applications, “mac-
roscopic” models may be sufficient, and “biofilm” models may be unnecessary. However,
Cunningham and Mendoza-Sanchez (2006) demonstrated that using the bulk concentrations
to describe biodegradation is acceptable under some circumstances, but not if the biodeg-
radation process is metabolism-limited, that is, if the reaction is slow compared to con-
taminant mass transfer into the biofilm (Williamson and McCarty 1976). In this case, the
biodegradation must be described in terms of the concentrations within the biofilm, not the
concentrations in the bulk groundwater (Cunningham and Mendoza-Sanchez 2006). Thus,
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although a “macroscopic” formulation may indeed be appropriate in some, perhaps many,
circumstances, the more general and complete approach is to account for the fact that bio-
degradation occurs within biofilms, and hence the mathematical expressions that describe
biodegradation must be written in terms of concentrations within those biofilms.

Therefore, in order to accurately predict the transport and biodegradation of chlorinated
ethenes, Eq. 1 is likely to be insufficient in many cases. What is required is a model that
accounts for at least three important processes: transport in the bulk groundwater, mass
transfer between the bulk groundwater and stationary biofilms, and diffusion with non-linear
chemical kinetics within the biofilm. This presents a further problem: such a model will
involve coupled, non-linear, partial differential equations, and will therefore be difficult to
solve efficiently.

In response to these needs, this article makes four important contributions. First, to the
best of our knowledge, the mathematical model presented here is the first transport model that
also accounts for diffusion and non-linear biodegradation of chlorinated ethenes in biofilms.
Second, we present two new computational algorithms developed specifically for problems
of transport, mass transfer, and non-linear reaction. Third, we have identified which of the
two new algorithms is computationally more efficient for the case of chlorinated ethenes.
Finally, we have applied the new model to compare the biodegradation behavior under dif-
fusion-limited, metabolism-limited, and hydrogen-limited (donor-limited) conditions.

2 Mathematical Model

2.1 Transport and Reaction Equations

The purpose of the mathematical model is to describe the transport and degradation of chlori-
nated ethenes in groundwater. Within the mobile (bulk) groundwater, each chemical species
j undergoes advection, dispersion, and mass transfer from the groundwater to a stationary
biofilm that coats the grains of the aquifer. These processes are described by Eq. 2.

n
∂C j (x, t)

∂t
= n D j

∂2C j (x, t)

∂x2 − n ν
∂C j (x, t)

∂x
− 3 (1 − n)

ω j

R2

× [
C j (x, t) − S j (x, r = R2, t)

]
(2)

Definitions of all variables are given in Table 1. For simplicity, we assume that sorption and
retardation are negligible for the chlorinated ethenes under consideration, though it would
be possible to amend Eq. 2 to account for sorption or retardation. Equation (2) has been
presented and discussed in the literature previously (e.g., Rosen 1952; Kasten et al. 1952;
Rasmuson and Neretnieks 1980; Crittenden et al. 1986) and is therefore not derived here.

We conceptualize that grains of aquifer solids are approximately spherical and are coated
by stationary biofilms of uniform thickness (Cunningham and Mendoza-Sanchez 2006;
Mendoza-Sanchez and Cunningham 2007). Within the stationary biofilms, each chemical
species j undergoes diffusion through the biofilm and chemical reaction.

nf
∂S j (x, r, t)

∂t
= nf Df

j
1

r2

∂

∂r

[
r2 ∂S j (x, r, t)

∂r

]
+ nfα j (x, r, t) R1 < r < R2 (3)
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Table 1 Definitions of notation in mathematical model, Eqs. 2–9

Symbol Definition

b First-order rate coefficient for the death of bacteria in the biofilm (1/T)

C j (x, t) Concentration of chemical species j in the bulk (mobile) groundwater (M/L3)

D j Dispersion coefficient for chemical species j in the bulk groundwater (L2/T)

Df
j Diffusion coefficient for chemical species j within the biofilm (L2/T)

H(x, r, t) Concentration of hydrogen in the biofilm (M/L3)

H∗ Threshold concentration of hydrogen below which no dechlorination occurs (M/L3)

K1 Half-velocity (half-saturation) constant for the biodegradation of DCE (M/L3)

K2 Half-velocity (half-saturation) constant for the biodegradation of VC (M/L3)

KH Half-velocity (half-saturation) constant for the utilization of hydrogen (M/L3)

Ki1 Coefficient for the inhibition of VC degradation due to competition by DCE (M/L3)

Ki2 Coefficient for the inhibition of DCE degradation due to competition by VC (M/L3)

n Bulk porosity of the groundwater aquifer (–)

nf Porosity of the biofilm (–)

PH Rate of production of hydrogen by fermentation of electron donors (M/(L3 T))

q Maximum utilization rate coefficient for degradation of DCE and VC (1/T)

r Radial position within the biofilm (L)

R1 Radius of an aquifer grain, not including the thickness of the biofilm coating the grain (L)

R2 Radius of an aquifer grain, including the thickness of the biofilm coating the grain (L)

S j (x, r, t) Concentration of chemical species j within the biofilm (M/L3)

t Time (T)

v Groundwater velocity (L/T)

x Position in the bulk groundwater (distance in the direction of mean groundwater flow) (L)

X (x, r, t) Concentration of biomass in the stationary biofilm (M/L3)

α j Reaction rate of chemical species j (M/(L3 T))

μ Maximum bacterial growth rate (1/T)

ω j Mass transfer coefficient for chemical j between groundwater and biofilm (L/T)

Equations 2 and 3 are coupled through a boundary condition at the interface between the
biofilm and the bulk groundwater, written for each chemical species j .

nf Df
j
∂S j (x, r = R2, t)

∂r
= ω j

[
C j (x, t) − S j (x, r = R2, t)

]
(4)

Equations analogous to (2–4) have been presented previously (Cunningham and Mendoza-
Sanchez 2006; Mendoza-Sanchez and Cunningham 2007; Mendoza-Sanchez 2007), so
details of these equations are not repeated here.

It is worth noting that, in this article, we treat the bacteria as a fixed, stationary biofilm.
This is a traditional and accepted approach in describing biodegradation in groundwater
systems (e.g., Rittmann 1993; Zysset et al. 1994; Lensing et al. 1994; Rittmann and
VanBriesen 1996). However, recent experimental data provide conflicting evidence as to the
relative importance of mobile (pelagic or planktonic) bacteria in biodegradation of chlorinated
ethenes (cf. Schaefer et al. 2009, 2010; Haest et al. 2010). If it becomes clear in the future
that mobile bacteria play a significant role in biodegradation of chlorinated ethenes, then the
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model presented here will need to be amended to account for both stationary and mobile
bacteria, perhaps using a method similar to that employed by Clement et al. (1998).

To the best of our knowledge, the transport equations (2) and (3) have never been coupled
to a Monod or Michaelis–Menten model for biodegradation kinetics within the biofilm. In
this paper, we adopt the kinetic model developed by Cupples et al. (2004), which describes
the reductive dehalogenation of DCE to VC and subsequently to ethene (ETH). This model
accounts for biomass growth in the biofilms, competitive inhibition between DCE and VC,
and the effect of electron-donor (hydrogen) concentration. The following reaction rate expres-
sions for DCE, VC, and ETH are coupled to Eq. 3.

αDCE = −
⎛

⎝ q SDCE (x, r, t)

SDCE (x, r, t) + K1

(
1 + SVC(x,r,t)

Ki2

)

⎞

⎠
(

H (x, r, t) − H∗

H(x, r, t) − H∗ + KH

)
X (x, r, t) (5)

αVC = −αDCE −
⎛

⎝ q SVC(x, r, t)

SVC(x, r, t) + K2

(
1 + SDCE(x,r,t)

Ki1

)

⎞

⎠
(

H(x, r, t) − H∗

H(x, r, t) − H∗ + KH

)
X (x, r, t)

(6)

αETH =
⎛

⎝ q SVC(x, r, t)

SVC(x, r, t) + K2

(
1 + SDCE(x,r,t)

Ki1

)

⎞

⎠
(

H(x, r, t) − H∗

H(x, r, t) − H∗ + KH

)
X (x, r, t) (7)

We must also account for how the biomass concentration X (x, r, t) varies over space and
time. In this model, we assume that the thickness of the biofilm is constant in space and time,
but that the concentration of active cells within the biofilm can change as bacteria grow or
die. Therefore, again following Cupples et al. (2004), we have the following equation for
biomass concentration.

dX (x, r, t)

dt
= μ

⎛

⎝ SDCE(x, r, t)

SDCE(x, r, t) + K1

(
1 + SVC(x,r,t)

Ki2

) + SVC(x, r, t)

SVC(x, r, t) + K2

(
1 + SDCE(x,r,t)

Ki1

)

⎞

⎠

×
(

H(x, r, t) − H∗

H(x, r, t) − H∗ + KH

)
X (x, r, t) − bX (x, r, t) (8)

Unlike the equations for reaction rates of DCE, VC, and ETH (i.e., Eqs. 5–7), the equation
for biomass growth (8) is not coupled to a transport equation (3). This is because the biofilms
are assumed to be stationary, i.e., fixed films.

Finally, we account for the hydrogen concentration, H(x, r, t). Hydrogen is produced by
the fermentation of electron donors (Fennell and Gossett 1998). By making the simplifying
assumption of a spatially and temporally constant hydrogen production rate, PH, we can
write the following reaction rate expression for the net production of hydrogen.

αH = PH − (αETH − αDCE) . (9)

Equation 9 is coupled to Eqs. 2 and 3 to describe the transport, production, and consumption
of hydrogen. The assumption of a spatially and temporally constant hydrogen production
rate, PH, is a simplification of reality. Accounting for variations in hydrogen production
would require the addition of fermentation-related mathematical expressions (e.g., Fennell
and Gossett 1998; Hammond et al. 2005), and would also require the model to account
for the temporally- and spatially-varying concentration of a fermentable electron donor.
Although this may be feasible, it represents a significant increase in the complexity of the
model. Experimental data on rates of hydrogen production by fermentation in dechlorinating
systems are sparse, and therefore it is not clear that adding this complexity to the model
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would improve our predictive capability. In any case, the simplified treatment of hydrogen
production employed here was sufficient to qualitatively describe the important behavior of
the system under “hydrogen-limited” (donor-limited) conditions, as shown in Sect. 5. Future
versions of the model might account for such complexities as variable hydrogen production,
variable biofilm thickness, and/or bacterial transport.

Equations 2–9 comprise a model for the transport and reaction of DCE, VC, and ethene. It
is worth noting that DCE and VC are daughter products of the biodegradation of trichloroeth-
ene (TCE) and/or tetrachloroethene (or perchloroethene, PCE), which are typically the parent
compounds at contaminated sites. However, in this paper, we focus only on the conversion
of DCE to VC and finally to ethene. As pointed out by Cupples et al. (2004), the conversion
of DCE and VC to ethene is often slow, leading to accumulation of these compounds at
contaminated sites (e.g., Hoelen et al. 2006). This is especially problematic because VC is
the most toxic of the chlorinated ethenes. Hence, a firm understanding of the DCE-to-ethene
conversion is warranted. In cases where PCE and TCE are present, the model presented above
could be expanded by adding additional equations for the reaction terms αTCE and αPCE, and
modifying Eq. 5 to include the formation of DCE by dechlorination of TCE.

2.2 Initial and Boundary Conditions

To complete the model, initial and boundary conditions are required. The initial and boundary
conditions may differ depending on the physics of the problem to be considered. Here, we
consider the case of contaminated groundwater pumped through columns of porous media, as
was described recently elsewhere (Mendoza-Sanchez et al. 2010). The columns are initially
considered to contain no contamination. However, we assume that there is a uniform distri-
bution of active bacteria throughout the column, and a uniform concentration of hydrogen
(due, for instance, to the fermentation of available electron donors). Therefore, the initial
conditions for Eqs. 2, 3, and 8 are as follows.

CDCE(x, t = 0) = 0 CVC(x, t = 0) = 0 CETH(x, t = 0) = 0 CH(x, t = 0) = 0

SDCE(x, r, t = 0) = 0 SVC(x, r, t = 0) = 0 SETH(x, r, t = 0) = 0 H(x, r, t = 0) = H0

X (x, r, t = 0) = X0 (10)

We assume that water entering the column is contaminated with cis-DCE at a concentration
C0, but does not contain any other contaminant. Thus, the boundary conditions for equation
(2) at the upstream end of the column (x = 0) are as follows.

νCDCE(x = 0, t) − DDCE
∂CDCE(x = 0, t)

∂x
= νC0

νCVC(x = 0, t) − DVC
∂CVC(x = 0, t)

∂x
= 0

νCETH(x = 0, t) − DETH
∂CETH(x = 0, t)

∂x
= 0

νCH(x = 0, t) − DH
∂CH(x = 0, t)

∂x
= 0 (11)

We also assume that at the effluent end of the column (x = L), there is no dispersive flux.
Therefore the boundary conditions for Eq. 2 at the downstream end of the column are as
follows.
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DDCE
∂CDCE(x = L , t)

∂x
= 0 DVC

∂CVC(x = L , t)

∂x
= 0

DETH
∂CETH(x = L , t)

∂x
= 0 DH

∂CH(x = L , t)

∂x
= 0 (12)

Finally, we need boundary conditions for Eq. 3. Equation 4 is the boundary condition for
Eq. 3 at the surface of the biofilm. The boundary conditions for Eq. 3 at the internal edge of
the biofilm (i.e., at r = R1, the interface between the biofilm and the grain which it coats)
are as follows.

∂SDCE(x, r = R1, t)

∂r
= 0

∂SVC(x, r = R1, t)

∂r
= 0

∂SETH(x, r = R1, t)

∂r
= 0

∂ H(x, r = R1, t)

∂r
= 0 (13)

Equations 10–13 complete the model that was presented in Eqs. 2–9. With these initial and
boundary conditions, it is possible to apply the SSOS or SSPI algorithm to solve the system
of equations, and thereby predict the transport of the chemicals through the columns.

2.3 Non-Dimensional Groups

The mathematical model presented in Eqs. 2–13 can be re-written in dimensionless form
by non-dimensionalizing the key variables. That results in a reduction of the total number
of parameters describing the problem, as parameters in the non-dimensionalized equations
appear as dimensionless groups. In the interest of space, we do not here present the full model
in dimensionless form. However, a few dimensionless variables or groups are relevant to the
ensuing discussion, and hence we define those terms here.

The overall biodegradation process takes place in three steps: mass transfer of the con-
taminant from the mobile (bulk) groundwater to the biofilm, diffusion through the biofilm,
and degradation within the biofilm. The three dimensionless groups that describe those three
processes are, respectively, the Stanton number (St j ), the diffusion modulus (Ed j ), and
the Damköhler number (Da). There are also separate Damköhler numbers that describe the
rates of hydrogen production (DaH), biomass growth (Daμ), and bacterial death (Dab). The
dimensionless groups Ed j , Da, and DaH are defined as follows.

Ed j = Df
j/R2

2

ν/L
Da = Lq X0

νC0
DaH = L PH

νC0
(14)

These three dimensionless groups are particularly important because they characterize if the
overall biodegradation process is limited by diffusion in the biofilm, by metabolism of the
contaminants, or by production of hydrogen. Note that each chemical (DCE, VC, ETH, hydro-
gen) can have its own value of the diffusion modulus (Ed j ) because the biofilm diffusion
coefficient Df

j may differ for each chemical.
Finally, we note that the time t can be non-dimensionalized according to t̄ = vt/L . When

the model equations are solved numerically (as described below), the time step in the model
solution is �t̄ = v�t/L .

3 Solution Algorithms

Equations 2 and 3 must each be written and solved four times, i.e., for the concentrations of
DCE, VC, ETH, and hydrogen. Also, Eq. 8 must be solved for biomass concentration. Thus,

123



www.manaraa.com

172 I. Mendoza-Sanchez, J. Cunningham

a system of nine coupled, non-linear, partial differential equations must be solved (subject to
appropriate boundary and initial conditions). In solving this mathematical model, the goal is
to determine the concentrations C j (x, t) of each chemical species in the bulk groundwater,
and the concentrations S j (x, r, t) of each chemical species within the stationary biofilms. If
we know the concentrations C j and S j at some time t , then we can estimate the concentrations
at t + �t by solving Eqs. 2–9.

Previously, we presented an algorithm (Mendoza-Sanchez and Cunningham 2007) called
the system-splitting algorithm, which was capable of efficiently solving equations that
describe transport in a bulk phase with diffusion and linear reaction kinetics in a stationary
phase. That algorithm would be applicable here if the reaction rate terms α j were linear
(e.g., first-order) kinetic expressions. Accounting for non-linear reaction kinetics as shown
in Eqs. 5–9 requires modification to the system-splitting approach. The essence of the system-
splitting approach is that it effectively de-couples the bulk transport equation (2) from the
biofilm equation (3), and solves these iteratively until the solutions converge. That framework
is still applicable to the current problem, but now a method must be developed to account for
the non-linear reaction kinetics in Eq. 3. At least two approaches are possible, as described
in the sub-sections that follow.

3.1 System Splitting with Operator Splitting (SSOS)

The first possible approach is to use the system-splitting method while applying operator
splitting to solve Eq. 3. Operator splitting has been applied previously to solve problems of
transport with reaction (e.g., Chiang et al. 1991; Valocchi and Malmstead 1992; Kaluarachchi
and Morshed 1995; Lanser and Verwer 1999). With an operator splitting approach, an approx-
imate solution to Eq. 3 is obtained by de-coupling the diffusion term from the reaction term,
and solving these sequentially over small time steps. There is “splitting error” inherently
associated with this approach, but the error might be acceptably small if the time steps are
small enough (Valocchi and Malmstead 1992).

Figure 1 provides a flow chart of how the SSOS method works to solve for C j (x, t+�t) and
S j (x, r, t+�t). Here, we describe the procedure briefly in words. For each time step, we make
an initial guess at the bulk concentration, the biofilm concentration, and the biomass concen-
tration; these initial guesses are Ci=1(x, t +�t), Si=1(x, r, t +�t), and Xi=1(x, r, t +�t),
respectively. Using the initial guess of Si=1(x, r = R2, t + �t), we solve Eq. 2 to get
an updated estimate of the bulk groundwater concentrations: Ci+1(x, t + �t). Then, this
updated estimate of bulk groundwater concentration is used in the boundary condition (4),
which enables the solution of the diffusion part of Eq. 3. The diffusion problem is solved
using a standard finite difference approach as described elsewhere (Mendoza-Sanchez and
Cunningham 2007; Mendoza-Sanchez 2007). Solution of the diffusion problem provides an
intermediate estimate of the biofilm concentration, Sdiff (x, r, t + �t). Then, these interme-
diate concentrations are updated to account for the chemical reactions as given by Eqs. 5–8.
The chemical reaction equations are solved using a Runge–Kutta algorithm for ordinary dif-
ferential equations (Atkinson et al. 1989). This provides updated estimates of the biofilm
concentration, Si+1(x, r, t + �t), and the biomass concentration, Xi+1(x, r, t + �t). Then,
the (i + 1)th estimates are compared to the i th estimates. If the estimates agree to within
a suitable tolerance (as described below), then Eqs. 2 and 3 have been solved successfully
for the time step �t ; if the estimates do not agree to within the tolerance, then the entire
procedure is repeated, starting with the most recent estimates as an initial guess.

The convergence criterion for the iteration is as follows. For each of the four chemi-
cals considered (DCE, VC, ETH, and hydrogen), we compute the vector of concentration
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Use the estimate of the concentration at the surface of 
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and (8).  Obtain estimate of biofilm conc. and biomass 

conc.:                               and

Start with the concentrations at time t:
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to solve the diffusion part of eqn. (3); obtain inter-

mediate estimate of biofilm conc., 
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the error between

i and i+1 iterations of biofilm surface conc.
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iteration loop

(system splitting)

Store the estimate of biofilm concentration at the 

surface of the grain,                                    , and repeat 

the iteration:  i = i + 1

Concentrations at time t+Δt have been obtained

),,(1 ttrxS i Δ++
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Yes; system splitting has converged
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1
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+
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+
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Fig. 1 Flow chart for system splitting with operator splitting (SSOS) approach to solve Eqs. 2–9. Equations
2 and 3 are de-coupled and solved iteratively by the system-splitting approach (Mendoza-Sanchez and Cunn-
ingham 2007). In each iteration, Eq. 3 is solved by operator splitting to de-couple the diffusion term from the
non-linear reaction term. The dashed box indicates the operator-splitting steps

differences Si+1(x, r = R2, t + �t) − Si (x, r = R2, t + �t). Each of those differences
is a vector, not a scalar, because there are multiple x locations. We compute the 1-norm of
the concentration differences for each of the four chemicals. Then we add together the four
1-norms to provide an overall error. If that overall error is less than 1×10−6, then the iteration
has converged.
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3.2 System Splitting with Picard Iteration (SSPI)

The second possible approach for solving the mathematical model is to use the system-
splitting method while applying Picard iteration (Celia et al. 1990) to solve Eq. 3. Figure
2 provides a flow chart of how the SSPI method works to solve for C j (x, t + �t) and
S j (x, r, t +�t). The SSPI method is identical to the SSOS method except for the steps indi-
cated by the dashed box in Fig. 2; these steps comprise the Picard iteration algorithm. Here
we briefly describe the Picard iteration method with words. The diffusion and reaction terms
in Eq. 3 are solved simultaneously, but the reaction terms must be approximated to make this
possible. The reaction terms are approximated by using the old (first guess) concentrations
inside the biofilm, allowing an approximate solution to Eq. 3, Spred(x, r, t + �t). Then,
the approximate solution of Eq. 3 is used again to obtain a better estimate of the reaction
terms. Equation 3 is solved once more using the improved estimate of the reaction terms,
yielding a corrected estimate Scorr(x, r, t + �t). This process continues until the solution
converges. Thus, the SSPI method involves two iteration loops: an outer iteration loop for
the system-splitting approach (which de-couples Eqs. 2 and 3), and an inner iteration loop
for the solution of the non-linear diffusion-reaction equation (3).

The convergence criterion for the outer iteration loop (system splitting) was described
above in Sect. 3.1. The convergence criterion for the inner iteration loop (the Picard
iteration) is as follows. At each x location, we compute vectors of concentration differ-
ences, Scorr(x, r, t + �t) − Spred(x, r, t + �t). That difference is a vector, not a scalar,
because there are multiple r locations for each x location. We have four such vectors, one for
each chemical (DCE, VC, ETH, and hydrogen). We compute the 1-norm of the concentration
differences for each chemical, and we add together the four 1-norms to provide an overall
error. If that overall error is less than 1 × 10−6, then the iteration has converged for that x
location. The procedure is repeated for every x location.

3.3 Comparison of SSOS and SSPI methods

The differences between the SSOS and SSPI algorithms can be seen by comparing Fig. 1
to Fig. 2. Steps outside the dashed boxes are identical in the two figures; these represent
the steps involved in the system-splitting approach, which is employed in both cases. Steps
inside the dashed boxes differ between the two methods; these represent the operator splitting
method (in Fig. 1) and the Picard iteration method (in Fig. 2) employed to solve the non-linear
diffusion-reaction equations.

Other operator-splitting approaches or iterative approaches may also be possible. These
could include Strang splitting, standard sequential iterative splitting, extrapolating sequential
iterative splitting, symmetric sequential iterative splitting (Chiang et al. 1991; Valocchi and
Malmstead 1992; MacQuarrie and Sudicky 2001; Carrayrou et al. 2004), and/or Newton iter-
ation. Here we limited ourselves to two basic approaches of fundamentally different types
(operator splitting vs. iterative non-splitting approach) to assess if one general strategy is
superior to the other. Further refinement of the OS or PI methods may be possible in the
future but is beyond the scope of this article.

4 Numerical Experiments

Having developed algorithms for solving the mathematical model, two questions arise. First,
which of the two methods is more computationally efficient for describing the fate and
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Fig. 2 Flow chart for system splitting with Picard iteration (SSPI) approach to solve Eqs. 2–9. Equations 2 and
3 are de-coupled and solved iteratively by the system-splitting approach (Mendoza-Sanchez and Cunningham
2007). In each iteration, the non-linear diffusion-reaction equation (3) is solved by Picard iteration. The dashed
box indicates the steps involved in the Picard iteration method

transport of chlorinated ethenes? Second, what new insights can the model give us regarding
the behavior of chlorinated ethenes in the environment? To answer these questions, we have
devised a series of numerical experiments, as described in the sub-sections that follow.
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Table 2 Test problems for DCE and VC transport and biodegradation

Case Diffusion rate Metabolism rate Hydrogen production rate

How fast? EdDCE EdVC EdETH EdH How fast? Da How fast? DaH

1 Fast 5.22 6.17 7.78 36.5 Fast 7.8 Fast 15

2 Moderate 0.52 0.62 0.78 3.65 Fast 7.8 Fast 15

3 Slow 0.052 0.062 0.078 0.365 Fast 7.8 Fast 15

4 Very slow 0.005 0.006 0.008 0.037 Fast 7.8 Fast 15

5 Fast 5.22 6.17 7.78 36.5 Moderate 1.56 Fast 15

6 Fast 5.22 6.17 7.78 36.5 Slow 0.39 Fast 15

7 Fast 5.22 6.17 7.78 36.5 Very slow 0.078 Fast 15

8 Fast 5.22 6.17 7.78 36.5 Fast 7.8 Moderate 1.5

9 Fast 5.22 6.17 7.78 36.5 Fast 7.8 Slow 0.15

10 Fast 5.22 6.17 7.78 36.5 Fast 7.8 Very slow 0.015

4.1 Comparison of Computational Efficiency

It is not inherently clear which method, SSOS or SSPI, should be more computationally
efficient. SSOS requires use of small time steps to keep the splitting error low (Valocchi
and Malmstead 1992). SSPI generally allows larger time steps, but requires a number of
iterations at each time step. It is possible that one method might be more computationally
efficient under certain conditions but not under other conditions. Consider that the overall
biodegradation process takes place in three steps: mass transfer of the contaminant from the
mobile (bulk) groundwater to the biofilm, diffusion through the biofilm, and metabolism
(degradation) within the biofilm. The three dimensionless groups that describe those three
processes are, respectively, the Stanton number (St j ), the diffusion modulus (Ed j ), and the
Damköhler number (Da). There are also separate Damköhler numbers that describe the rate
of hydrogen production (DaH), the rate of biomass growth (Daμ), and the rate of bacte-
rial death (Dab). Thus, the overall rate of biodegradation is influenced by six different rate
processes, and depending on the particular values of the dimensionless groups, either the
SSOS or the SSPI algorithm might be more computationally efficient.

Therefore, to assess which of these methods is more computationally efficient, we applied
both algorithms to 10 test problems. Parameter values selected for the test cases are sum-
marized in Table 2. In all cases, we used the same values of St j , Daμ, and Dab. However,
we varied the values of Ed j , Da, and DaH; by so doing, we are able to look at cases that
are either diffusion-limited, metabolism-limited, or hydrogen-limited. The 10 test cases were
formulated to span realistic ranges of the relevant parameters, but are not based on any actual
laboratory or field data; rather, the test cases are hypothetical parameter combinations, which
are presented to investigate the range of possible model responses.

For each test case, we used both the SSOS and SSPI algorithms to simulate the fate and
transport of DCE, VC, and ETH as contaminated water flows through a column of soil.
Simulations were performed in the MATLAB� computing environment, version 7.4.0, on a
laptop computer with an Intel� CoreTM2 Duo processor with 2.4 GHz, 4 GB in RAM, and
Microsoft Windows�, Vista environment. The “clock” function in MATLAB� was used
to quantify the computer time required to run each simulation. To maximize the efficiency
of both SSOS and SSPI algorithms, codes were run with the maximum time step �t that
gives an accurate answer; the methods used for determining the maximum allowable �t are
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described in the next section. The efficiency of the algorithms is determined by comparing
the computing time that each algorithm required to solve the same test case.

4.2 Determination of Time Step �t for SSOS and SSPI Algorithms

One of the contributions of this article is the comparison of the SSOS and SSPI algorithms to
solve the system of equations presented above. To make a “fair” comparison, both algorithms
were implemented with the largest time step, �t , that would yield a suitably accurate solu-
tion; in this fashion, both algorithms were run at maximum efficiency. However, this requires
that the maximum allowable �t be determined for each algorithm for each of the 10 test
problems. Here, we describe the procedure by which �t was determined.

The goal is to select the highest �t that yields an accurate solution. The difficulty with
this is that there is no analytical solution against which we can evaluate the accuracy of the
numerical solutions. Thus, for each test case, we proceeded as follows. First, for any test
problem under consideration, we ran both the SSOS and SSPI algorithms with a dimen-
sionless time step of �t̄ = 1 × 10−5, and as model output, we determined the predicted
breakthrough curves of DCE, VC, and ETH. Then, we compared the breakthrough curves
predicted by the SSOS algorithm to those predicted by the SSPI algorithm, and we verified
that the two algorithms yielded solutions that were essentially identical as determined by a
value of the Nash–Sutcliffe model efficiency coefficient (Nash and Sutcliffe 1970) greater
than 0.999. These solutions were then accepted as the “correct” solution for the test problem
under consideration. Then, for both the SSOS and SSPI algorithms, we re-ran the models
with values of �t higher by a factor of 10, i.e., �t̄ = 1 × 10−4, and we compared the
new model predictions to the “correct” solutions. If the new model predictions matched the
“correct” solution with a Nash–Sutcliffe model efficiency coefficient greater than 0.999, then
the time step was again multiplied by a factor of 10, and the process was repeated. If the
Nash–Sutcliffe model efficiency coefficient for a simulation generated with a particular value
of �t̄ was found to be less than 0.999, then that solution was deemed “incorrect,” and that
value of �t̄ was considered to be too large.

To illustrate this procedure, we refer to Figs. 3 and 4. Figure 3 shows predicted break-
through curves from the SSPI algorithm generated for test problem 1 (see Table 2). The
breakthrough curves illustrated are for the sum of the dimensionless DCE, VC, and ETH
concentrations at the effluent of the soil columns; hence the breakthrough curves should
approach a value of exactly 1 because the total number of DCE, VC, and ETH moles is
conserved as DCE is converted to ETH. The breakthrough curves in Fig. 3 were generated
with �t̄ = 1 × 10−5, 1 × 10−4, 1 × 10−3, and 1 × 10−2. In all cases, the breakthrough
curves agree, and the value of the Nash–Sutcliffe model efficiency coefficient was effectively
1. Thus, a time step of �t̄ = 1 × 10−2 is deemed acceptable for the SSPI algorithm for that
test problem, because it matches the “correct” solution. However, Fig. 4 shows breakthrough
curves for the same problem, using the same values of �t̄ , generated with the SSOS algo-
rithm. In this case, when �t̄ = 1×10−3, the algorithm yields an “incorrect” solution because
the splitting error is too large, and the value of the Nash–Sutcliffe model efficiency coefficient
is 0.99. Therefore, this solution is rejected. Hence the maximum allowable value of �t̄ for
the SSOS algorithm is 1 × 10−4 for test problem 1.

4.3 Comparison of Biodegradation under Different Rate-Limiting Conditions

The 10 test cases listed in Table 2 span a range of possible conditions for biodegradation of
chlorinated ethenes. Specifically, in cases 2–4, we expect the overall biodegradation process
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Fig. 3 Breakthrough curves predicted by the SSPI algorithm for test problem 1 using four different val-
ues of �t̄ . Breakthrough curves are for the sum of the dimensionless DCE, VC, and ETH concentrations
at the effluent of the soil columns; hence the breakthrough curves should approach a value of exactly 1
because the total number of DCE, VC, and ETH moles is conserved as DCE is converted to ETH. The param-
eter E is the Nash–Sutcliffe model efficiency coefficient, which indicates the agreement between two model
predictions (Nash and Sutcliffe 1970)
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to be limited by the rate of contaminant diffusion through the biofilm; in cases 5–7, we
expect biodegradation to be limited by the metabolism of the bacteria within the biofilm; and
in cases 8–10, we expect biodegradation to be limited by a low supply of hydrogen (caused,

123



www.manaraa.com

Efficient Algorithms for Modeling 179

for instance, by a low supply of fermentable electron donors). The MATLAB� codes that
solve Eqs. 2–9 produce, as output, predictions of the breakthrough curves of DCE, VC, and
ETH at the exit of the soil columns. Hence, we can compare the predicted breakthrough
curves under diffusion-limited, metabolism-limited, and hydrogen-limited (donor-limited)
conditions, and we can determine how the overall (macroscopic) biodegradation process
depends upon which biofilm-scale process is rate-limiting.

5 Results

5.1 Model and Code Verification

The mathematical model and the computer codes for the SSOS and SSPI algorithms were
verified in three ways. First, we verified that the SSOS and SSPI codes predict concentra-
tions that agree to within 10−4 % for any given set of input conditions. This indicates that
both algorithms are correct (or both contain an error that affects the predicted concentrations
identically, which seems very unlikely). Second, we verified that the total number of moles of
chemical (i.e., the sum of the DCE moles, the VC moles, and the ethene moles) is conserved
during a simulation. Third, we ran test cases where the Monod kinetic parameters were set
to a “pseudo-linear” case, i.e., the parameters in Eqs. 5–7 were chosen so that the reaction
kinetics are approximately linear (e.g., C0 � K1, C0 � K2, constant H and X ); results
of simulations with those test cases were verified against our existing linear-kinetics model
(Mendoza-Sanchez and Cunningham 2007).

5.2 Comparison of Computational Efficiency

The computing times required by the SSOS and SSPI algorithms for each of the 10 test
cases are summarized in Table 3. In some cases, the CPU times are relatively long for a
one-dimensional transport simulation. This could be partially a consequence of the hardware
(Intel� CoreTM2 Duo processor with 2.4 GHz, 4 GB in RAM) or the software (MATLAB�)
employed. For research purposes, including algorithm development and visualization of
results, MATLAB� is chosen because of its user-friendly computing environment. For more
complex modeling of 2D or 3D problems, a compiled language with an executable file (such
as FORTRAN), and/or a better processor (or cluster of processors), would likely reduce the
required computational time. In any case, all simulations reported here were performed on
the same computer using the same software, and therefore it is appropriate to compare CPU
times between simulations.

As can be seen from Table 3, the two algorithms perform similarly when there is no rate
limitation (case 1) or when the biodegradation is metabolism limited (cases 5–7). In these
cases, the SSPI can operate at a larger time step, but that advantage is countered by the fact
that the SSPI has two iterative loops rather than one, and the net effect is that neither algo-
rithm is markedly superior to the other. However, there are significant differences for cases
that are diffusion-limited (cases 2–4) or donor-limited (cases 8–10). Under diffusion-limited
conditions, the SSOS requires a small time step to keep the splitting error low, and therefore
the SSPI is able to run about 2–10 times faster than the SSOS for cases 2–4. The opposite
is true under donor-limited conditions: the SSPI must operate at a small time step in order
for the Picard iteration to converge, but the SSOS has no such limitation, and therefore the
SSOS is able to run about 40 times faster than the SSPI for cases 8–10. As noted above,
codes were run with the maximum time step �t that gives an accurate answer. This analysis
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Table 3 Comparison of computing time for SSOS and SSPI algorithms

case SSOS algorithm SSPI algorithm

�t (dimensionless) CPU time (h) �t (dimensionless) CPU time (h)

1 1 × 10−4 1.24 1 × 10−2 1.05

2 1 × 10−4 2.71 1 × 10−2 1.16

3a 1 × 10−4 5.60 1 × 10−3 2.76

4a,b 1 × 10−5 55.20 1 × 10−3 3.91

5 1 × 10−3 0.43 1 × 10−2 0.76

6 1 × 10−3 0.43 1 × 10−2 0.60

7 1 × 10−3 0.43 1 × 10−2 0.57

8 1 × 10−3 0.47 1 × 10−5 23.24

9 1 × 10−3 0.47 1 × 10−5 20.69

10 1 × 10−3 0.43 1 × 10−5 19.67

a In cases 1, 2, and 5–10, the biofilm was discretized into 50 radial intervals for solution. However for case
3, the number of radial intervals was 100, and for case 4 the number of radial intervals was 200. Under
diffusion-limited conditions, steep concentration fronts may be present in the biofilm, and a finer discretiza-
tion is required to resolve the steep front.
b Case 4 was run to a maximum dimensionless time of t̄ = 1. All other cases were run to a dimensionless time
of t̄ = 2. A shorter simulation time was implemented for case 4 because the larger number of radial intervals
slows down the simulation.

allows users of the model to select which algorithm (SSOS or SSPI) is likely to be superior
based on the conditions being simulated.

5.3 Comparison of Biodegradation under Different Rate-Limiting Conditions

Figure 5 shows predicted breakthrough curves (BTCs) for DCE, VC, and ETH for test cases
1, 4, 5, and 8. These BTCs represent predictions of the concentrations of DCE, VC, and
ETH that would be observed at the effluent of a soil column fed with DCE-contaminated
water. By comparing the BTCs, it is possible to learn something about how the overall bio-
degradation process is influenced by individual biofilm-scale processes. Case 1 is the “base
case” in which all biofilm-scale processes are fast; hence there is no significant limitation
to biodegradation, and DCE is converted completely to ethene by the time the water exits
the soil column. However, the other three cases each represent a different rate limitation, as
summarized in Table 2. Case 4 is characterized by a slow rate of chemical diffusion within
the biofilm, i.e., low values of Df

j ; case 5 is characterized by a lower value of q , the max-
imum utilization rate coefficient for degradation of DCE and VC; case 8 is characterized
by a lower value of PH, the rate of hydrogen production. Therefore, we refer to cases 4,
5, and 8 as diffusion-limited, metabolism-limited, and hydrogen-limited (or donor-limited),
respectively. The terms “diffusion-limited” and “metabolism-limited” have been used in this
context previously (Williamson and McCarty 1976).

As seen from Fig. 5, the diffusion-limited and metabolism-limited results are qualitatively
similar, but still with some important differences. In both the cases, we see DCE begin to
break through, reach a maximum concentration, and then decrease toward a lower value.
ETH continues to break through at higher and higher concentrations, and in both cases the
system has not reached a steady state even by a dimensionless time t̄ = 4. This is because
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Fig. 5 Breakthrough curves predicted for four of the 10 test cases. Case 1 is the “base case” with no signifi-
cant limitation to the biodegradation process; case 4 is diffusion-limited (i.e., slow rate of diffusion within the
biofilm); case 5 is metabolism-limited; and case 8 is donor-limited (hydrogen-limited)

the microbial population X grows slowly over time, and as X increases, the rates of chemical
reaction also increase, as can be seen from Eqs. 5–7. Therefore, diffusion-limited and metab-
olism-limited conditions are characterized by initial breakthrough of the parent compound,
followed by a decrease in the concentration of the parent compound and a continued increase
in the concentration of ETH as the overall biodegradation process becomes more efficient.
If the simulation had run longer, the system would eventually reach a steady state in which
the concentration of DCE breaking through reaches a steady level (results not shown). This
behavior has, in fact, been observed in laboratory soil column experiments: see, for instance,
Figs. 2f or 3 of Mendoza-Sanchez et al. (2010).

An important difference between case 4 and case 5 is that, in the diffusion-limited case,
the biodegradation is still about 80% complete, even though the biofilm diffusion coefficients
in case 4 are 1,000 times slower than the corresponding diffusion coefficients in case 1 (as
seen in Table 2). Therefore, it appears that biofilm diffusion is not likely to represent a sig-
nificant limitation to the overall biodegradation process except in very extreme cases, e.g.,
if the biofilm is very deep. In contrast, decreasing the value of q by a factor of 5 (Da = 7.8
in case 1, Da = 1.6 in case 5) leads to a significant reduction in the conversion of DCE to
ETH. Hence we conclude that the overall biodegradation process is much more sensitive to
the specific utilization rate q than to the biofilm diffusion coefficients Df

j .
In the donor-limited case (case 8), the biodegradation of DCE to ETH initially appears

successful, with ETH breaking through before DCE. However, after some time, the biodegra-
dation begins to fail, the breakthrough of ETH decreases, and a delayed breakthrough of DCE
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is observed. This predicted behavior is somewhat surprising, but it has, in fact, been observed
experimentally under conditions that were suspected to be donor-limited: see Figs. 2d or 5
of Mendoza-Sanchez et al. (2010). The critical reason why the biodegradation deteriorates
appears to be that the microbial population, X , cannot be sustained without an adequate
supply of hydrogen, and as X decreases, the conversion of DCE to ETH deteriorates.

6 Discussion

By formulating and solving the biofilm-scale model presented herein, we gain capabilities
that are not available from models based solely on macroscopic concentrations. For instance,
the model is able to distinguish subtle differences in contaminant breakthrough behavior
depending on what process (biofilm diffusion, contaminant metabolism, or hydrogen pro-
duction) limits the overall rate. This distinction would not be possible with a model that
“lumps” all biofilm-scale processes into a single degradation rate constant.

At least two important implications result from the work presented here. First, with the
model presented herein, we might be able to more easily determine what limitation must be
overcome in situations where biodegradation of chlorinated ethenes is not observed to be
successful. This would improve our ability to clean up contaminated groundwater. Second,
application of the model to simulate hydrogen-limited (donor-limited) conditions reveals
an important behavior. Biodegradation at first appears successful, with ethene appearing
downstream ahead of DCE, but the process later deteriorates and a delayed breakthrough of
DCE and VC is observed. This is potentially important because it implies that contaminated
groundwater sites must be monitored sufficiently to ensure that successful biodegradation of
DCE to ethene is a sustained process and will not fail after some initial apparent success.

There are other biofilm-scale processes not considered in this paper which could also
limit the overall rate of biodegradation. These include the mass transfer of the contaminants
from the mobile (bulk) groundwater to the surface of the biofilm (i.e., “external” mass trans-
fer) and the growth and death of bacteria within the biofilms. Future work could expand on
the analysis presented here to determine the conditions under which those processes have a
significant effect on the overall biodegradation process.

The model presented here is intended to extend the modeling capabilities developed previ-
ously by other researchers. Space limitations prevent a complete review of all related model-
ing efforts, but a few of the most salient are considered here. Several previous researchers have
developed models that couple the transport of chlorinated ethenes with Monod kinetics or
Michaelis–Menten kinetics for biodegradation (e.g., Hossain and Corapcioglu 1996; Clement
et al. 1998; El-Farhan et al. 1998; Chambon et al. 2010). However, all of those models estimate
reaction rates based on bulk contaminant concentrations, rather than concentrations in bio-
films; as noted above, this approach cannot account for differences in behavior between, for
instance, diffusion-limited and metabolism-limited conditions. In contrast, other researchers
have accounted for diffusion and reaction in biofilms and have coupled those processes to
pore-scale (sub-REV-scale) descriptions of flow and transport (e.g., Dillon and Fauci 2000;
Eberl et al. 2000). However, such models would need to be “upscaled” in order to produce
estimates of macroscopic contaminant behavior, e.g., contaminant breakthrough curves at
the column-scale or larger. Bae et al. (1990) developed a model that coupled Darcy-scale
transport with diffusion and biodegradation (with Monod kinetics) in biofilms, but it was
valid only under steady-state conditions, which allows the use of an effectiveness factor to
represent the contaminant flux from bulk fluid into biofilm. Lensing et al. (1994) coupled a
transport equation to an equation for biodegradation (Monod kinetics) in a biofilm, but the
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biofilm was not spatially resolved, and hence the model of Lensing et al. (1994) would not
be able to account for diffusion limitations. Other researchers coupled transport to diffusion
and reaction in biofilms, but assumed that the reaction kinetics were linear (e.g., Zysset et al.
1994; Cunningham and Mendoza-Sanchez 2006; Mendoza-Sanchez and Cunningham 2007),
which is valid only in specialized circumstances. Thus, overall, to the best of our knowledge,
the model presented here is unique in its capabilities.

7 Summary and Conclusions

In this article, we have presented a model that accounts for (1) transport of chlorinated eth-
enes in flowing groundwater, (2) mass transfer of contaminants between mobile groundwater
and stationary biofilms, and (3) diffusion and biodegradation within the biofilms. We have
focused on DCE, VC, and ethene, but the model could be easily expanded to also account for
tetrachloroethene (perchloroethene) and trichloroethene. Equations for biodegradation kinet-
ics account for biomass growth within the biofilms, the effect of hydrogen on dechlorination,
and competitive inhibition between VC and cis-dichloroethene. To the best of our knowl-
edge, the mathematical model presented here is the first transport model that also accounts
for diffusion and non-linear biodegradation of chlorinated ethenes in biofilms.

To solve the coupled, non-linear, partial differential equations that comprise the mathe-
matical model, we developed and tested two new numerical algorithms to solve the equations
in the model. The two new algorithms are extensions of previous work by Mendoza-Sanchez
and Cunningham (2007) and are called system splitting with operator splitting (SSOS) and
system splitting with Picard iteration (SSPI).

We tested the two solution techniques under different rate-limiting conditions to deter-
mine if one algorithm is superior to the other. The two algorithms perform similarly when
there is no significant rate limitation or when the biodegradation is metabolism-limited. In
these cases, the SSPI can operate at a larger time step, but that advantage is countered by the
fact that the SSPI has two iterative loops rather than one, and the net effect is that neither
algorithm is markedly superior to the other. Under diffusion-limited conditions, the SSOS
requires a small time step to keep the splitting error low, and therefore the SSPI is able to run
about 2–10 times faster than the SSOS. The opposite is true under donor-limited conditions:
the SSPI must operate at a small time step in order for the Picard iteration to converge, but
the SSOS has no such limitation, and therefore the SSOS is able to run about 40 times faster
than the SSPI.

Finally, we applied the model to compare the biodegradation behavior under diffusion-
limited, metabolism-limited, and hydrogen-limited (donor-limited) conditions. Diffusion-
limited and metabolism-limited conditions are both characterized by initial breakthrough of
the parent compound, followed by a decrease in the concentration of the parent compound
and a continued increase in the concentration of ethene as the overall biodegradation process
becomes more efficient. Model results suggest that biofilm diffusion is not likely to represent
a significant limitation to the overall biodegradation process except in very extreme cases,
e.g., if the biofilm is very deep. The overall biodegradation process was observed to be much
more sensitive to the specific utilization rate q than to the biofilm diffusion coefficients Df

j .
In donor-limited conditions, biodegradation initially appears successful, but after some time,
the biodegradation begins to fail; this predicted behavior is consistent with previous exper-
imental results (Mendoza-Sanchez et al. 2010). Overall, the model results suggest that pro-
cesses occurring at the biofilm scale can have important effects on the overall (macroscopic)
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biodegradation process, and hence models for biodegradation must incorporate descriptions
of these biofilm-scale processes.
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